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ABSTRACT 

We prove a general inequality for kernels satisfying the maximum prin- 

ciple. This is then used to derive a sufficient condition for the kernel to 

define a continuous map of Lebesgue spaces. Exactly this condition hap- 

pens to be necemary and sufficient for the validity of Hardy's inequality 

with weights in one dimension. Some applications indicating the unifying 

nature of the potential inequality are given. 

In t roduc t ion  

In this article we describe a powerful potential theoretic inequality, which gen- 

erates Hardy's inequality and many other inequalities as special cases. Our ap- 

proach is very general and has potential for much further development. Some of 

these directions are indicated in the paper. 
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In 1920, Hardy [8] discovered an inequality while attempting to simplify the 

then-known proofs of Hilbert's inequality ([9], chapter IX). Since its inception, 

this inequality has found many applications: almost all books on PDE contain 

it. Many authors have extended and generalized this inequality. A major con- 

tribution was made by Talenti [19] in 1966, and later developed by Talenti [20], 

Tomaselli [21], Muckenhoupt [15], Bradley [7], etc. These developments con- 

cerned Hardy's inequality with weights. Later contributions are due to Kufner- 

Triebel [12], Maz'ja [14], and most recently due to Stepanov [18] (1987), and 

Arifio--Muckenhoupt [2] (1990). 

Most of these works are one-dimensional in nature and rely on the special 

kernel involved, and the potential theoretic nature of the inequalities has gone 

unnoticed. In contrast, we introduce the maximum principle in section 1, and 

apply it to prove several new potential inequalities from which we obtain several 

classical applications. The main ingredient is the maximum principle - well- 

known in potential theory and satisfied by most of the classical kernels. We 

believe that our approach reveals new aspects of this principle, which has been 

succesfully applied in several endeavours such as capacity theory. In section 

2 several sufficient conditions are given so that the "potential operator" is a 

continuous map of Lr-spaces. Some of the conditions are generalizations, and 

some are new. Section 3 deals with applications of results in section 2. Several 

classical cases are treated. Finally in section 4 we exhibit several interesting 

examples of kernels satisfying the maximum principle. 

1. M a x i m u m  P r i n c i p l e  a n d  P o t e n t i a l  I n e q u a l i t y  

Let (X, B(X)) be a measurable space, where X is a locally compact Hausdortf 

space with a countable base and B(X) the a-algebra of Borel sets. 

Let N(x, dy) be a (positive) kernel on X in the sense that N: X x B(X) 

[0, +oo] is a mapping such that, for every x E X, A ~ N(x, A) is a a-finite 

measure, and, for every A E B(X), x ~ N(x, A) is a Borel function. If f is a 

Borel function on X then we write 

(1) (Nf)(x)  = Ix  f(y)N(x, dy) 

whenever the right side of the equation makes sense, and we refer to N f  as t h e  

p o t e n t i a l  of  f.  For example, for any nonnegative Borel function f the potential 

of f exists and is a nonnegative Borel function. Also, given such a kernel N(x, dy) 
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and a measure p on (X, B(X)) we shall write 

(l~#)(dv) = I x  N(x, dy)p(dx) (2) 

for the measure N #  defined by (2). 

In the special case, when N(z, dy) has a density, i.e. when there exists a a- 

finite measure A on (X, B(X)) and a Sorel function G: X x X ~ [0, + ~ ]  such 

that N(z, dy) = G(z, y)A(dy) we will write Gf instead of N f  and G/~ for the 

density of N#,  i.e. 
P 

= 

H e n c e  = 

Let us denote by "POT = 790T(N) the set of all Borel functions on X such 

that the potential of f exists. Let us denote by X + the set of all non-negative 

Borel functions on X. Then X + C_ 7~OT(N), for every positive kernel N. 

Definition 1: Let N(x,  dy) be a (positive) kernel on X and 7~ _C 7~OT(N). N 
satisfies the strong maximum principle on T~ (with constant M > 1), if for every 

f E R,  and for every A > 0, 

(3) s < M $  + N [f+l{s_>x}] 

where s = Nf .  In the special case, when :R = X +, we will simply say that N 

satisfies the maximum principle. | 

We can rewrite (3) as 

(4) (N f )  + < M~ + N [f+l((Nl)+>x}]. 

If (3) is true for every )~ > 0, then (4) is true for every )~ > 0, since for such )t is 

{N f  _> ~} = {(N f )  + >_ )~} and the right side of (3) is always nonnegative. For 

)~ = 0 (4) is always true, since {(N f )  + > 0} = X and N is a positive kernel. If 

(4) is true for every )~ _> 0, then (3) is true for every ~ > 0, since g f  < (N f)  +. 
Now, letting ,~ ---* 0 in (3) we obtain 

g f  < M.  0 + g [f+l{Nt>O}] <_ N [f+I{NI>O)]. 

Therefore, (3) and (4) are equivalent. 

Notice also that, if both f and - f  are in 7~, it follows from (4) that 

(5) INfl < 2MA + g [If]- l{iNll>X}], 
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since [N(-f ) ]  + = (N f ) -  and {(N f )  + > ,X} k.J {(N f ) -  > ,X) C {[Nfl ~ ~}. In 

the following text we will mainly use (4) and (5). 

Remark 1: Let us recall (see [16], chapters 3 and 8) that the potential operator 

V of a transient Markov process satisfies the principle of positive maximum in the 

sense that sup(Vf)(x) = supI(Vf)(y): f(y) > 0), for every continuous function 

/ wi th  compact  support ,  for which V~ attains strictly posi t ive  values.  If we 

general ize  this not ion ,  in the  sense that  we al low the  constant  M to be bigger 

than  1, then  we can state  the m a x i m u m  principle as 

( N f < l on { f  > O} ==~ N f < M everywhere) 

for may bounded, measurable, nonnegative function f with compact support. 

Simple computation then shows that, for every ~ > 0, 

_< ~ u  + n [ / .  l~N1_>~l], 

where the last inequality follows from the maximum principle above. Notice 

that every nonnegative Borel function f can be approximated from below by 

a sequence fn = rain(/ .  1K., n), where Kn C_ X is compact arid, Kn C Kn+l, 

Un~__l Kn --- X. The monotone convergence theorem and the fact that (4) is trivial 

for A = 0, shows that (4) is satisfied for any f E X +. Therefore, the maximum 

principle, as stated in Definition 1, is the generalization of the classical notion 

from potential theory. Since we allow, in general, that 7~ is bigger than X +, it 

justifies the word "strong" in Definition 1. 

In particular, the fact that the n-dimensional Brownian motion is a transient 

Markov process for n ~_ 3 shows that the kernel N(z, dy) = G(z, !/)dT/, where d!/ 

is the n-dimensional Lebesgue measure, and 

1 
(6) G(x,V) = 

II x - y II ~ - ~ '  

satisfies the maximum principle with constant M = 1. Similarly (see [16], page 

3.32), the Riesz kernel Ia defined by 

d~t 
(7) z~ (x ,  dy) = I[ x - u II ~ - ~ '  where  n > 3, 0 < a < 2 

satisfies the maximum principle with constant M = 1. 
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We believe that  this explains the "background" for the notion defined in Deft- 

nition 1. Many other interesting examples (some of them need the generality of 

Definition 1) will be treated in sections 3 and 4. | 

Before we state the main results of this paper, let us specify what we mean 

by convex function and concave function in this paper. We will denote the set 

[0, +co) of nonnegative real numbers by R+.  

De~nition 2: We will say that • : R+ --~ I t+ is a convex function if there exists 

a (positive) Borel a-finite measure 71 on I t+ such that  

(s) 

where 

( 9 )  

~0 t ¢(t) = ~(u)du, for every t ~ R+,  

~o(u) = 7/([0,u]), for every u E It+.  1 

De£nition 3: We will say that • : R+ -4 R+ is a concave f u n c t i o n  if there 

exists a (positive) Borel measure 7/on R+ such that 

(10) o([a, b]) is finite, for every 0 < a < b < +co 

and 

(11) O(t) = 9(u)du, for every t ¢ R+,  

where ~o satisfies the following properties: 

(12) 0 < ~o(u) < +oo, for every u > O, 

(13) 

and 

( 1 4 )  

lim u~(u) = 0 ,  
n---~0+ 

- = v ] ) ,  for every 0 < u < v < +co. | 

In the definition above ~(0) is not required to be finite. However, the behaviour 

of ~ at zero is controlled by (13), which, as pointed out by one of the referees, is 

redundant. Since we need this property later, we leave it as part of the definition. 

Notice that one consequence of (10) is that ~ is a-finite. 
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Remark 2: Notice that 4~(t) = tp , p _ 1, satisfies the conditions in Definition 

2. For p > 1 we get Tl(du ) = p(p - 1)un-2du, ~ ( u )  = pt/p-x. For p -- 1 we get 

r/ = the point  mass  at zero, ~ - 1. 

Notice also that  @(t) = t p , 0 < p < 1, satisfies the  condit ions in Definit ion 3. 

We get Tl(du ) -- p(1 - p)un-2du, ~(u) = pu p-1. Then  u~(u)  = pun ~ O, when  

u - *  O+. I 

We can state the main results now: 

THEOREM 1: (The Potential Inequality for Convex Functions) Let • be a convex 

function (in the sense of Defnition 2) and ~ = ~'. Let N(z ,dy)  be a kernel on X 

which satisfies the strong max/mum principle on 7~ C POT(N) ,  with constant 

M. Then, for every f • 7~, 

1 

where s = (N f )  +. 

Proo~ Let us denote by r/the measure, defined by (9), which corresponds to 4i. 

Applying Fubini's theorem several times, and the strong maximum principle, we 

obtain 

i., ° [ - h i  : ' , (" ' )  J0  a u  

"IM[81M ul~(du) [slM ~]+~(du) 
• i 0  J O  

= fo+°~[sl  M - u]+~(du) < by (4) 
f+oo 1 

<- Jo ~ N  [/+1{o_>.}] ~?(du) 

= M fo+°°y(dU) / xN(x ,dy ) f+(Y) l { . ( , )> . ,  

[/Y ] = --~ N ( x ,  d y ) f + ( y )  • lo(,)_>.}r/(du ) 

1 
= ~ N  [f+~(s)] .  | 

COROLLARY 2: Let ~ and N(x,  dy) be as in the previous theorem. 

each a-fnite measure ~ on (X, B(X)), and for every f e ~ ,  

T h e n  leol • 
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particular, f f  ~( t )  = t p, p > 1, then 

..d, <_ fx 
Proof: The second inequality is an obvious consequence of the first inequality 

and the fact that ~o(t) = pt p-1. The first inequality follows immediately from 

(15) by Fubini argument. II 

Remark 3: If f and - f  are both in 7~, then we can use (5), instead of using (4), 

in Theorem 1 and Corollary 2. Then we will obtain same inequalities as before, 

but  with IN f[ instead of (N  f )  +, [fl instead of f+ ,  and 2M instead of M. II 

THEOREM 3: (The Potential Inequality for Concave Functions) Let ~ be a con- 

cave function (in the sense of Definition 3) and ~o = ~'. Let N ( z ,  dy) be a kernel 

on X which satisfies the maximum principle (i.e., 7~ = X+ ), with constant M.  

Then, for every f E X +, 

(18) 

where s = (N  f )  + = N f . 

Proof: The proof of this theorem is similar to the proof of Theorem 1. As before, 

we denote the measure which corresponds to • by r/. 

If s(z)  = 0 then f ( y )  = O, g ( z ,  dy)-(a.e.), since ] > 0 (this is the only place 

in the proof where we cannot have general T£). Hence, N[f~(s)] (x)  = O, which 

proves the desired inequality in this case. 

Suppose now that s(x) > 0. Let us denote s ( x ) / M  by r. Then for every 

0 < t < ~" we obtain 

¢ ( r )  - O ( t )  = ~o(u)du - -  [ ~ ( u )  - ~ ' ( t ) l  du + ~o(t). (r  - t ) .  

Applying Pubini's theorem and (14), as in Theorem 1, we obtain 

0 ( , )  - ¢ ( t )  = - [ (r  - u ) ~ ( d u )  + ~ ( t ) .  ( r  - t )  
J(t ,r] 

= - [ [r - u l + ~ ( d u )  + ~ ( t ) .  (r  - t).  
J(t ,+oo) 

The maximum principle shows that r - u <_ (1 /M)(N[ f l { ,> ,}] ) .  Since the right 

side is nonnegative, it follows that [r - u ]  + _< (1 /M)(g[ f l { ,>~}]) ,  which impnes 
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that 

f(t 1 ~(r)  - @(t) > - ~ N  [fl{o>_u}] Tl(du) + qo(t). (T - t) 
,+oo) 

1 
-- - ~ N  [f .  (-'7 (t, s]) 1 + ~(t).  (r - t) 

1 
= ~ l v  [ f .  (~(s)  - ~(t))] + ~( t ) .  (r - t). 

Notice that ~o(t) is a constant, which implies that (1/M)N[f~o(t)](x) equals 

~o(t)[(1/M). s(x)] = ~o(t)r. Hence, it follows that, for every t • (0, r), 

~(r)  - ~(t) > M y [f~o(s)] - t~o(t). 

Letting t ~ 0+ in the last inequality, and using (11) and (13) we finally obtain 

(18). i 

An immediate consequence of Theorem 3, exactly as in the case of Theorem 1 

and Corollary 2, is the following corollary: 

COROLLARY 4: Let • and N(x, dy) be as/n  Theorem 3. Then for each a-finlte 

measure ~ on (X, t3(X)), and for e v e ~  / • X+,  

1 
(19) fxV (M) d. >_ -~ fxf~(s)d(~.). 
In particular, ffq~(t) = tp, 0 < p < 1, then 

(20) 

Remark 4: Notice that (15), (16), (18), and (19) are very general forms of "the 

integration by parts '-type formula. This becomes even more transparent when 

we refer to the proofs of Hardy's inequalities for p > 1 and 0 < p < 1 in [9] 

p. 242 and p. 251-252. Hence, the best possible constants will be obtained in 

inequalities, derived from potential inequalities, which are classicaly proven by 

"the integration by parts" method. A typical example is the Hardy's inequality 

(see section 3). | 

Remark 5: Notice also that the maximum principle and the potential inequality 

are not stated in the most general form. Purely mathematically speaking we can 



Vol. 83, 1993 POTENTIAL INEQUALITY 105 

repeat exactly the same p roof  in the case when f is even a vector function and 

s = T f ,  where T can be any operator (not necessarily linear, and not necessarily 

single-valued), which maps vector functions f into one-dimensional functions s, 

and, instead of f+,  we can have any nonnegative real-valued function/~(f). Of 

course, the corresponding potential inequality will be valid for (T,/3, N) whenever 

the proper form of the maximum principle is satisfied for (T,/~, N). 

The reason that we didn't state our theorems in this generality is that we 

didn't find interesting examples which can be formulated in (T,/3, N) setting but 

can not be formulated in terms of theorems stated here. Also this more general 

setting obscures the "nature" of the potential inequality, which was explained in 

the previous remark. | 

2. I n e q u a l i t y  I[Nfl[q,,, ~ C]lfl[p,~ 

Let N(x, du) be a (positive) kernel on X. Let # be a ~-finite measure on 

(X,B(X)) .  Let u be a measure on (X,B(X)) .  Let p and q be real numbers 

such that 1 _~ p, q < +oo, and let us denote their conjugates by p' and q', re- 

spectively. More precisely 1/p + 1/p' = 1 and ~/q + Uq'  = 1. We denote the 

standard q-norm (p-norm) with respect to ~ (u) by II Hq,,, (H IIp,~). We allow 

these norms to attain value +oo throughout this paper. Also, in this paper we 

accept the convention that 0.  (+oo) = 0. 

In the special case, when ~ (u) has a density w(z) (v(x)) with respect to A (for 

the definition of A see the beginning of section 1), then we will write II I1~,~ for 

II II~,,, (ll IIp,~ for Ir ]lp,~). As before, we will write G instead of N, when N(x, d~) 

has a density. For simplicity in notation we will denote A(dx) by dx. Also, (a.e.) 

means "almost everywhere with respect to A" (for other measures we will specify 

the measure in (a.e.) expressions). Notice that the fact that ~ is c~-finite implies 

that 0 ~_ w(x) < +co (a.e.). Since u is not necessarily ~-finite, 0 _~ v(x) ~ +oo 
in general. 

In this section we will consider the question of finding conditions for which 

an inequality of the type given in the title of the section is valid for some set 

of functions f ,  assuming that the potential inequality holds. Since our setting 

is very general we will not be able to obtain sharp constants C, but we will be 

concerned only in establishing inequalities of the type above in this situation. 

In the following theorems we present some arguments. Instead of explaining 
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these arguments each time, we will explain them now, and quote them when 

necessary. 

Remark 6: If [[fl[p,v = +co, then there is nothing to prove. Hence, it is enough 

to prove the inequality when fP.v is finite (a.e.), and Ilfllp,v is finite. In particular, 

it means that {v = +oo} C_ {f  = 0}. Therefore, in our proofs we can assume, 

without loss of generality, that 0 < v < +oo. 

Another argument in these theorems will be that in some cases there will be a 

set Y C_ X,  Y E B(X),  such that 

f x  lN f['dtz = f y  lN(fly)lqd,,  . 

We claim that in such a case we can restrict our attention on (Y, B(Y)). Clearly, 

it is true for/~ and f .  For v we can do that,  because IlYlIp,, on Y is less than 

Ilfllp,. on X. The only part which is not immediately clear is if the restriction 

= N / ( Y  x B(Y)) 

satisfies the same maximum principle as N. But, since ~ [ f / Y ]  = N [ f l r ] ,  it 

follows that N satisfies the maximum principle, too. Hence, it is enough to prove 

our inequality on (Y, B(Y)). | 

The last possibility that may occur is when Ilfllp,, = 0. It is not clear that 

in this case the left side, i.e., IIGfllq,w must be zero. Under certain technical 

assumptions, which are satisfied in all the theorems, this will be true. 

LEMMA 5: Let G(x, y) satist]es either the strong maximum principle in the form 

(5) or the maximum principle on 2( +. Let us denote the set {x: v(x) = 0} by B. 

Suppose that B C C U D, where 

(21) C = {x: 1B(y) " G(x, y) = 0, for ahnost all y} 

and 

(22) D = {x: w(y). G(y, x) : O, for almost all y}. 

If f E T¢ and Ilfllp,~ = 0, then IIGfllq,~ = 0, where 1 < q < +c~. 

Proo~ We denote  the  set { x: f(x) = 0 ) by m. If Ilfllp.~ = 0, then  X = A U B 

(a.e.). Applying the potential inequality for convex functions on G, we obtain 

i x  IGfI 'wdx <_ q(2M) q - ' / x  ISl IGf l~ - ' (O~)d~  

= q(2M) q- '  / I l l  Iaflq-'(Gw) dx, 
JB 
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where the last equality follows from the fact that f is zero on A. Using B C_ CUD 

and (22), which says that (Gw)(x) = 0, for every x E D, we obtain that 

fx IG/l'wdx <_ q(2M)'-l fc lYl IG/l'-l( w)dx. 

Since q - 1 > 0, it is enough to prove that (Gf)(x) = 0, for every x E C. For 

x E C, by (21), 

IGYI(z) < fx  G(x,y)l/l(y)@ = fn  G(x,y)IYI(y)@ = 0. | 

In the case when p = q, we can obtain the desired inequality by applying very 

simple estimate of the measure ~rp. 

PROPOSITION 6: Let N(x,  dy) satisfy the strong maximum principle on ~ in the 

form (5). If  there exists a constemt K >_ 0 such that 

N t l <  Kit, (23) 

then, for every f E 7"4, 

(24) 

where C = pK(2M) p-1 . 

IIN fllp,. <- CIIfllp,., 

Proof: Apply the condition (23) on the inequality (17), which is valid with 

s = [Nf[ (see Remark 3). We obtain that 

The straightforward application of H61der's inequality finishes tile proof. II 

Example 1: Consider the classical example, where N(x, dy) is defined by 

N f ( x )  = f ( y ) ~ .  

It is easy to see that every nondecreasing function w satisfies (23) for N defined 

above. Since N(x,dy)  satisfies the nmxinmm principle (see Remark 11 in the 

next section), then Proposition 6 shows that for every nondecreasing fimction w 

is 

IlNfllp,w ___ Cllfllp,~,. | 
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The condition (23) is satisfied in some classical situations (see the example 

above), but we would like to have more general conditions. Some of them can be 

derived as the consequence of the potential inequality for convex functions, and 

others by applying the potential inequality for concave functions. 

CONCAVE CASE. In this paragraph we assume that 1 < p _< q < -For, and that 

all of it, v, and Nix , dy) have densities. For r = q/p _> 1 we define a (positive) 

kernel Gr(x, y) by 

Gr(x, = [G(x, y)lr. 

Since we have densities G and Gr, G(x, y) = G(y, x) and Gr(X, y) = Gr(y, x) are 

(positive) kernels, too. 

Suppose now that both G and Gr satisfy the maximum principle on X +, with 

constants M and/v/,  respectively. Then it follows from Theorem 3 that, for every 

f E X + , a n d f o r e v e r y 0 < a < l ,  

2~1 --a 
(25) (~ [f. ((~f)a-1] < ~ .  (0f)a, 

a 

where G is either G or 0r, and .~f is either M or .~/, respectively. 

THEOREM 7: Suppose that w and v satisfy the condition 

r , . l l / p '  r l'/qcz)_< (26) [Gv-" /PJ (z). ~ K < +oo, 

for a/most a/1 z E X. Then, for every f E "POT(G), 

(27) llG f][a,~, <_ ClJflJp,v, 

where C = Kql/q(q')l/r' Ml/(qf).VI l/(qq'). 

Remark 7: Recall that we follow the convention 0- (+oo) = 0, and that our 

kernel G is very general. The proofs of some inequalities (which are relatively 

simple for particular kernels) are more complicated than they may look at first 

sight. In proving the inequality (27) we will have to consider several subeases, 

and the role of the potential inequality, as well as (26), will be crucial. | 

Proof'. It is enough to prove (27) for 0 < v < +oo (see Remark 6). Consider now 

the sets A = {f  = 0}, B = {v = 0}, C = {Gv-f/P = 0}, D = {Gv-F/P = + ~ } ,  

and E, defined by, 

E = e XI = O, for almost all y E A ~ nB }. 
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Let us prove first that the conditions of Lemma 5 are satisfied. Notice that 

v -p'/p = +oo on B. Hence, if x E B and 1B(y)G(x, y) is positive (as a function of 

y) on a set of positive measure, then [Gv-P'/P](x) = +cx~. By (26) [Grw](x) = 0, 

which implies that G(y, x)w(y) = 0, for almost all y. Therefore, by Lemma 5, we 

can assume that ][fl[p,v > 0. 

Consider the set C. By the assumption above v-p'/p is (strictly) positive. 

Hence, for every x E C, G(x, y) = 0, for almost all y. In particular { G l e  > 

$} C C c, for every ~ > 0. Applying now the maximum principle for G on l c  we 

obtain 

Glc <_ MA + G [ l v .  lco] = MA, 

for every ~ > 0. Then (GIc ) (x )  = 0, for every x E C, i.e., for every x • C, 

G(z, y ) l c ( y )  = 0, for almost all y. Then, by Remark 6, we can restrict ourselves 

to C c, or, in other words, we can assume that C = 0 (a.e.). 

Consider the set D. If z • D, then, by (26), [Grw](x) = 0, and, therefore, 

(Gw)(x) = 0, too. Applying (17) on G and f • POT(G), we obtain 

I[ G(fl D ) IIq,,~ < const. • /D [fl [G([fI1D )] q-' ¢w dx 0, 

which shows that we can assume, without loss of generality, that f = 0 (a.e.) on 

D, i.e., D C A (a.e.). 

Consider the set E.  By the definition of E,  it follows that 

/E lG fl'wdx = /x  'G(fl AuB )'q(1Ew)dx. 

The fact that Gr(1EW) < Grw implies that we can consider v and 1EW as weights, 

for the present, and the conditions of Lemma 5 are fulfilled in this case. Since 

flAuB " V = 0, it follows that 

(28) fE [G flqwdx = O. 

Using all these we obtain that for z • X \ E  

< f x  G(x, y)lfl(y)dy IGfl(x) 

= [ G(x,u)lfl(u)du (since D C_ A, C = 0) 
JA ¢ 
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= Zo~Bo G(*'Y)IfI(Y){~'/ '~-'/ ' IG~-"/ '] ' /(" ')[G~-'Vq-'/("~)}(Y)d~ 

+ fA~,~ G(*, ~)lfl(y)d~ 

,ll/p < {/Ao~oG(~,y)lflP(y),(y)[G~-P'l']pl("q)(y)dy~ 

× {fooBo 
, , ~ 1 / p '  

To justify the last inequality notice that all the functions involved in the first 

integral on the right side are (strictly) positive on A c N B c, and, since x E X \ E ,  

this integral must be (strictly) positive. If A c n B = 0 (a.e.), then it is just 

HSlder's inequality. If G(x, y) = O, for almost all y E A c n B, then it is again 

just HSlder's inequality. If it is none of these two, then the third integral is +oo, 

and, since the first integral is positive, the right side is +o~. 

Finally, using (28) and the formula above, we obtain 

fx lG] l  "~d~ < fx w" [fxG(x,Y) lflPv(Gv-"/P)P/("q)dY] ~/" 
(29) 

' ~ 1 q/P: x 

We apply (25) on G, v - f /p ,  and a = 1/q' (notice a - 1 = -1/q) to get 

{/xlGflqwd~} 1/" M~l('f) 
- (1/q')q/("v') 

{Ix [Ix ]r }l/r x w(Gv-P'/P) q/(q'f). G(x,y)IfIPv(Gv-P'/P)P/(P'q)dy dx 

Using the general form of Minkowski's inequality (see, for example, Theorem 

202 on p.148 in [9]) we have that 

< Ml/Crp')(q')ql(rp ') ./. ISIP'(G'-P'/P) pIt''q) IIGYll~.w 

E l" p'/p q/(q'p') x a,(x, y)w(x)(av- ) (x) dx dy 

_ M~/(,p')(q,)~/(,, ') [ I.flP,,(G,,-"/') v/(''~)" . . . .  -~/, -- ~Gr[w(Gv-P/P)q/CPq)]~ dy. 
.Ix 
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We apply (26) on (Gv-P'/P) */(q'V), and then (25) on Gr, w, and a = 1/q, to 

obtain 

1 ^ 1 / 1 ~. / ~ (  t 
IlGfll~,,,, < M'-irM'-'Tr'(q )'--~'rp q ";K'-~ lfl p v( Gv-~' /P)~ (G~w)'AdY • 

Now, one more application of (26) completes the proof. | 

Remark 8: The condition (26) has been treated in connection with Hardy's 

inequality with weights. More precisely, it is well-known that in the case of 

Hardy's inequality, i.e., in the case when X = (0, +c¢) and 

1 i fy<_x 
(30) G(x,y)= 0 otherwise 

(26) is necessary and sufficient condition for (27) to be true. 

Surprisingly enough, as we have shown in Theorem 7, (26) is still a sufficient 

condition for such a general space as X, and such a general kernel G as in this arti- 

cle. Notice that the crucial steps were the applications of the potential inequality 

for concave functions (twice; for G and Gr). These applications correspond to 

the applications of the integration by parts in Hardy's classical cases. 

Notice also that in classical situation r cannot be observed on G, since the 

values of G are either 0 or 1. Even in (26) we have G instead of Gr, in the case 

when p = q. 

Hardy's inequality with weights is considered very early using methods via 

differential equations (see [6], [31, [4] ; see  a l so  historical remarks on p.14 in [11]). 

But, the condition (26) appears for the first time (as far as we know) in Talenti [19] 

(1966). He considered only the case p = q = 2 and weights related by formula 

w(x) = x-2v(x). These restrictions were removed in later papers by Talenti 

[20], and especially Tomaselli [21]. These theorems were reproved and extended 

to the case of measures by Muckenhoupt [15] in 1972. He also mentioned, in 

connection with the condition (26), the untitled and unpublished manuscript by 

M. Artola (unfortunately we were not able to see this manuscript). In contrast 

to previous authors, who still relied on differential equations, Muckenhoupt uses 

H51der's inequality and integration by parts formula, which is a technique that 

we managed to apply in the generality of Theorem 7. In all these papers the case 

p = q was treated. For the case p < q the proof was done by J.S. Bradley [7] 

in 1978, and, independently, a year later in [13] and [10]. A thorough treatment 
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of these theorems can be found in [14] and in [11], where also detailed historical 

remarks are given. In all these papers the special kernel G from (30) (or some 

simple modification of G or Gr) is treated. | 

The fact that in the classical case the condition (26) is also necessary suggests 

that it will be interesting to examine the problem in the general situation. The 

next proposition gives a condition on a kernel G (which is satisfied in classical 

Hardy's case) under which (26) is a necessary condition. The example after 

the proposition shows that there are kernels for which (26) is not a necessary 

condition. 

We denote the set {y: G(z,y) > 0} by Pz, and the set {x: G(x, z) > 0} by 
pz.  

PROPOSITION 8: Suppose that there exists a constant K > 0 such that,/'or every 

z E X, for every x E pz, and for every y E Pz 

r G(z,y)]  
(31) / [G(=,z)] 
If the inequality (27) is satisfied for some 

then (26) is satisfied for all z E X ,  with 

Proof: 

C > 0, and for ali f E X + C POT(G),  

constant C/ K. 

For every z E X we consider fz E 2d +, defined by 

{ G(z,y)l/Pv-P'/P(y) i f y  E Pz, 
f~(Y) = 0 otherwise. 

Cllf=llp,~ = C (fxf~(y)v(y)dy) lip 

( L  ' \1#= [( )( )] . 
= c G(z,u)o-,  (y),,(u)dy) C Gv-P'/P z 

On the left side of (27) we have (with r = q/p), using (31), 

IlGLllq,w >- (/p (Gf,)q(z)w(z)dz) '/' 

[fp ( ~  C(.,y) ) '  ] '/ '  = . G,.(x,z)w(x) [G,.(z,z)]l/q[GCz, Y)l' lPv-P'/P(y)dy dx 

1/p 
_> g .  G(z, ~). 

Then on the right side of the inequality (27) we have 
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__ G(z,y)v -p /P(y)dy) dx] l/q ~ K [/p. Gr(x,z)w(x) ( /p.  ' q 

= K[(G,~)(~)]  ' / ' .  [(Gv-~'/~)(z)]. 

The proof is finished by putting both sides of (27) together (the case 0, +co 

works here by the standard argument). | 

Remark 9: Notice that in the case when G(z, y) is either 0 or 1 condition (31) 

simply says that,  for every z E X,  and for every x E P ' ,  

and K = 1. In a classical Hardy's case P"  = [z, +oo) and P:  = [0, z], which 

shows that (31) is satisfied. | 

Example 2: Let 1 < p <  +cc  and t~ such that 0 < p a  < 1. T h e n 0  < ~r < 1 

and 0 < 1 - p a  < 1. Let us denote 1 -pc~ by/~. We define the kernel G(x, y) on 

(0, +oo) by 
{ ( y - x )  ~-1 i f O < x < y < + o ¢ ,  

(32) G(x, y) = 0 otherwise; 

G is known as the Weyl fractional kernel, and (~ as the Riemann-Liouville frac- 

tional kernel. Let us take w(x) = x p-l, and v(x) = 1. Then simple calculations 

lead to 

= a n d  = + c o ,  

where K depends on ot and/~ only. (~ and G both satisfy the maximum principle 

(see Proposition 12), but obviously (26) is not satisfied for v and w. We claim 

that (27) still holds for v and w, in the case p = q. We will show that v and w 

satisfy conditions in Theorem 10 below. Indeed 

v-p'/p. = KCw, 

since p ' (a  + ~ - 1) = f ( a  + 1 - pa  - 1) = ~p'(1 - p) = - ~ p  =/3 - 1. Riemann- 

Liouville and Weyl fractional kernels are treated in [1]. | 

CONVEX CASE. In this paragraph we assume that 1 < p _< q < +oo, and that 

measures p and v have densities. We assmne also that N(x,dy) satisfies the 

strong maximum principle on 7~ __. P O T ( N )  in the form (5). Therefore we will 

apply the potential inequality for convex functions as it was stated in Remark 3. 



114 M. RAO AND H. SIKI(~ Isr. J. Math. 

Our first theorem in the convex case is inspired by methods developed in 

Stepanov [18] for classical Hardy's case. Consider first the case when p < q. 

In this case we assume that N(x ,  dy) has a density. 

THEOREM 9: Suppose there exist a Borel function w* on X ,  which is (a.e.) finite, 

and a positive constant K ,  such that the following two conditions are satisfied: 

_~_ _ ,  ~ ^ , (33) v , (C,,v p/P) , (Cw*) p = w *  (a.e.), 

and 

(34) Gw _< K .  Gw" (a.e.). 

Then there exists a constant C such that, [or every f E Tt, 

(35) IlOfll ,w < cllfl{ ,  

Proof: Let us prove the inequality (35) for w*, instead of w, first. It is enough 

to prove it for 0 _< v < +co (see Remark 6). Consider now the sets B = {v = 0}, 

C = {Gp, v -p'/p < +oo}, and D = {Gw* = 0}. If x E B then v-P'/P(x) = +oo. 

Since w* is finite (a.e.) it follows that (33) can be fulfilled only if 

Gp, v-P'/P. ~w* = 0 (a .e . )  on  B.  

Thus w* = 0 (a.e.) on B and 

(36) B C_ (C U D) t'l {w* = 0} (a.e.). 

Notice also that for every x E C 

(37) 1B(y)Gp,(x)y) = 1B(y)G(x,y)  = 0 for ahnost all y. 

In particular, it shows that Lemma 5 is satisfied. Therefore we can assume, 

without loss of generality, that ][fllp, v > 0. Notice also that 0 < v < +o¢, (33), 

and (36) imply 

(38) (Gp, v - " / P ) ~ ( G w * )  p' = vP'/Pw * (a.e.). 

We claim that 

-p' /p(y)dy, ~ 1/p' 
(39) Ic/l(z) < )lfll,,v. (/x y)v 

J 
for every f E 7~. 
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Notice that if  G f v  -p'/p = +oo, then, since I[fllp,v > o, (39) is trivial. If 

Gp, v-f/p < +c~, i.e., if z E C, then, using (37), the fact that 0 < v < +oo on 

B c, and Hflder's inequality, we obtain 

]Gfl(z) _< _/~o G(x, y)l/[(y)dy 

_/.° a(x, ~/)v-I/"(y)~,I/P(y)Ifl(~/)dy 

<- (L 
which proves (39). 

We obtain the desired inequality for w* using the potential inequality, (38), 

and (39) in the following way 

fx lGfl'w'dz < K, fx lfl ,Gf,q-l(Gw')dz 

g l  ./y Ill IGII q/p' IGII{q-P)/P(Gw *) dx < by (39) 

f -- s - ^ , _< K1]l / l lp ,~ • Ill IGfl~(Gf v p/P)~, (Gw )dx 
JX 

f s , t = ( by (38))K111ftlp,'~ • Iflv~/PlGflO/P (w)~/P dx 
J x  

<_ Ka llfllp;v • llflb,," IGfl qw*dx 

q/p' 
= K~ Ilfll~(~ llGfllq,w.. 

Finally, we will consider two possibilities to prove the inequality (35). Either 

/x lGflqwdx < /x lGf'qw*dx 
o r  

~ ,Gflqw*dx < ~ [Gflqwdx. 
In the first case it is simply 

IIG fllq,w <_ IIG fllq,w. <_ CIIfllp,v. 

In the second case we apply the potential inequality on w first, then the condition 

(34), after that the inequality for w*, mad finally the assumption of the second 

case, to obtain 

fx lGfl'wdx < Kl ~ 'fllGf'q-'(Ow)dx 
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< C,  II/II ,/  • 15'/l'wdx | 

In the case p = q we can drop the assumption that N(x, dy) has a density, and 

again obtain the same theorem as above. The proof is exactly the stone as in the 

previous theorem, except that we are dealing with measures in conditions (33) 

and (34), instead of with functions. We can do that since for p = q the condition 

(33) is much simpler than in the theorem above. Since in this case the standard 

argument on measures apply we will state the theorem ozfly. 

THEOREM 10: Suppose there exist a Borel fimction w* on X ,  which is finite 

(a.e.), and a positive cons|era| K,  such that the following two conditions are 

satisfied: 

(40) v - ' / ' ( ~ ) ( N w * ) ( d ~ )  * ' / ' '  = ( w )  ( . ) ( d ~ )  

and 

(41) < K .  

Then there exists a constant C such that, for every f E Tl, 

(42) IiN flip,~, < C I[fil,,~- 

Remark 10: Notice that the classical Hardy's case mid Exanlple 2 show that 

there are cases in which Theorem 7 is satisfied, but not Theorems 9 and 10, and 

there are eases in which Theorem 10 (Theorem 9) is satisfied, but not Theorem 

7. | 

So far we have considered only the cases related to Hardy's inequality with 

weights. Let us show that direct applications of the potential inequality for con- 

vex functions and HSlder's inequality lead to theorems which are not satisfied 

even for the original Hardy's inequality from 1920. We believe that these theo- 

rems can be applied on some other kernels on bounded domains. The following 

theorem is a typical example of such results. We assume that p = q and that 

N(x,  dy) has a density. 
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THEOREM 11: Suppose that v and w satisfy the following condition: 

y6x 

Then there ex/sts a constant C such that, for every f E R, 

(44) IIGfllp,w < c Ilfllp,v. 

Proof." Let us denote IGf] by s. Using H51der's inequality mad arguments on 0, 

+oo cases as in the theorems above we obtain 

s(~) < Ix  G(x'Y)[fl(y)dy = Ix G(x'Y)lfl(v)v-1/P(V)Vl/P(v)dy 

< (Ix a(x'v)lflP(v)v(v)dv) '1, ' / ' '  

so tha t  

: < [G(IfI",,)]IG,:"/']P/P'. 

Applying the potential inequality for convex functions we obtain 

f x  s'(x)w(x)dx <- K fx  'fl(x)s'-'(x)(Gw)(x)dx 

= K./y IflvllPsp-l(Gw)v-llPdx 

On the other hand 

Ix  ^ ' ' - I x  ' "'lv "l" "'lP ^ "' sP(Gw) v v -p IPdx < [G(Ifl v)][Gv- ] v- (Gw) dx 

= by Fubini Theorem= fx iflPvO [v-P'/P(Ow)P' (Gv-P'/P)'/P' ] ,iV 

_< by (43) < M fx  IflPvdy" 

Finally, it shows that there exists a constant C such that 
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3. Applications: Analytic Inequalities 

The following proposition gives a large class of kernels satisfying the maximum 

principle. 

PROPOSITION 12: Let G(x, y) be a nonnegative function on R+ × R+ satisfying 

G(x ,y )=O f o r y > x ,  

for each y, x , G(x, y) is decreasing in (y, +oo), 

(45) 

(46) 

and 

(47) for each bounded measurable f ,  x ~ (G f)(x) is continuous. 

Then G satisfies the maximtun principle with constant 1. 

Proof." Let A > 0, f _> 0, and Gf(x) > A. Since Gf  is continuous, the set {Gf  > 

A} is open. Let a be the left end point of the component interval containing x. 

We have then 

ay(x)  = a(x,~)y(y)ey + a(x,y)y(y)d~.  

In the interval (a, x), GI  > A, and, by property (46) of G, in the first integral if 

we replace x by a we increase the integral, i.e., 

f f a(z ,  y)I(y)dy <_ a(a, y)I(~)dy = ,~ 

by choice of a. Using these remarks we obtain 

<_ ,~ + a(x,  y)I(~)l~as>_~q(y)d~, 

proving the result. | 

Remark 11: Similarly we may show that if G(x, y) is a nonnegative function on 

R+ x R+ such that 

(48) G(x ,y )=O f o r y < x ,  

(49) Gf  is continuous for bounded measurable f with bounded support, 

(50) O ( x , y ) < M . G ( a , y )  if x < a < y ,  

then G(x, y) satisfies the maximum principle with constant M. | 
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Example 3: Let a,  fl be positive numbers and let 

{ (x ~ ' + y " ) - ~  i fx_<y ,  
(51) A(z, y) = 0 if 0 < y < x. 

Then A satisfies the maximum principle with constant 2 ~. And 

( (x ~ ' + y a ) - ~  i f 0 < y < x  
(52) B(z,y)= 0 i f x < y  

satisfies the maximum principle with constant 1. And G = A + B satisfies the 

maximum principle with constant 2 ~. II 

HILBERT'S INEQUALITY. When a = /~ = 1 in Example 3 then H = A + B is 

the Hilbert kernel (x + y)-]  : x, y > 0. An inequality due to Hilbert states: 

7r 
(53) IIHflJp _< sin(r/p)IIfllp 

where H is the Hilbert kernel. Actually (53) was proved for p = 2 by Hilbert 

and by M. Riesz for p > 1. Attempts to simplify the then available proofs led 

to Hardy's inequality, r/sin(Tr/p) is the best constant in (53) (see [9]). Our 

methods do not give the best constant, but we can prove that H maps L p into 

L p continuously. Here is a more general result: 

Let A be defined as in (51), and suppose a/~ = 1. Then with dp = dx we find 

lip = C dx where 
~1 1 

C (z~ + 1)~ dz" 

So from (17) we get 

IIAfllp <_ pC2p-lllfllr 

Now duality arguments show that if a kernel G satisfies IIGIIIp _< Cpllfllp then 

the dual kernel G satisfies the same inequality with the same constant. Since 

is just B of (52) we see that A + B is a continuous map of LP into LP. As said 

before when a = ~ = 1 we get Hilbert-Riesz result. 

HARDY'S INEQUALITY. The well-known and very useful Hardy's inequality 

states: if e < p - 1 then 

(54) FPxe-Pdx < [ e - p +  1] f f  xedx 
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where / > 0 and F(x) = f;/(Odt. To derive this from our results let G(x, y) 

be defined by (30). By Proposition 12, G satisfies the maximum principle with 

constant 1, and Gf = F. From (17) with dp = xe-Pdx we get, if ~ < p - 1, 

oo p f FV-l  x~-P+l dx. 
FVx~-Pdx <- te - p + II 

Now use HSlder's inequality with x~dx as the base measure to get (54). 

The generalized Hardy's inequality due to A. Kufner and H. Triebel [12] states: 

/0 /0 (55) FPao dx <_ qP fPal dx, 

where F is as before, q = p/ (p  - 1), and a0 and 51 are functions such that 

To derive this take in (17) dp = a0(x)dx. Then d(Gp) = a ~ l p ( p -  1)- 'a~/qdx 

and 
FPaodx < P ¢L,p-l_llP l lq-  _ j . t '  O I O" 0 a x .  

p - 1  

Using HSlder's inequality as before we obtain (55). 

We may regard Hardy's inequality as an estimate of the size (in L v) of the 

"averages" ( l / x ) f o  f (y)dy .  This interpretation permits the following general- 

izations. In R "  define 

1 if Ilyll < Ilxll, 
(57) G ( z , y )  = 0 if IlYll > Ilxll. 

It may be verified that the kernel G(x, y) satisfies the maximum principle with 

constant 1. Taking 

d~ = Ilxll-"'dx 

we get from (17), using d(G#) = [nip - 1)] -1 w, I lyll-"(p-l)  dy, 

,, FV Ilxll-"edz < n ~ :  1) . f FP-'IIYlI-"(P-~)dY' 

where wn is the area of the surface of the unit sphere, and F = G.f, i.e., 

f 
F(x )  = [ f (y)dy ,  

Jm (o,llzll) 
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(58) 

where 

where B(0, Ilxll) is the ball of radius I1~,11 around 0. Using Hhlder's inequality 

again we obtain an n-dimensional version of Hardy's inequality 
u2np 

I1~11,, -< n(p-~ l )  II/11,,, 

s(~)=  1 /B " ' (~ ) '~"  
I1~11" (0,,, ,~ 

Remark 12: Notice that in the literature different inequalities appear under 

the name "n-dimensional Hardy's inequality". For example, weighted Sobolev 

inequality (its special case is ~iedrichs'  inequality below) is considered in [11] as 

"n-chmensional Hardy's inequality". Our inequality (58) is of a different type. 

It doesn't involve the gradient of the function, but the "average" of the function 

with respect to the expanding balls. Notice that the generality of our approach 

enables us to also consider the other types of expanding sets. II 

FRIEDRICHS' INEQUALITY. Let f~ be a bounded domain in R n. For every u E 

Cl(ft) ,  such that supp(u) C_ f~, the well-known Friedrichs' inequality is valid, i.e., 

(59) ~ [u]Pdx < C ~ HVul[Pdx, 

where w = (a , , la ,  l , . . .  ,a , , la~ , )  and I IV,, l l  = [E " : I (a , , l a~ , ) ' ]  '/~. 
Let consider this inequality carefully. Notice that, since ft is open, u can be 

interpreted as in CI (R") ,  where u and Vu are zero outside of ft. We have the 

following well-known formula: 

(60) u(x)  = 1 / R  v u ( y )  • (x - y) 
,,,'-2 ,, II ~ -  y I1" d~, 

where wn is the area of the unit sphere Sn(1) ill R" .  It follows that 

where v is the "potential" 

I /~ IIV,.,tl 
(61) v(z) = ~ ,, I Ix--; ' l]-"-'  du. 

The kernel 11 x - y II - = + '  satisfies the maximum principle with constant 1 (see 

Proposition 13 and (7)). Since in (61) we can put ft instead of R n, and 

9[ ~ dz < diam(ft) < +c¢, 
'~ .  II x - y IP- '  - 
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for every y E ~, we apply (17) on (61) to get 

(62) fnvPdx <_ C f. ,lVull" dx. 

Since lul _< v, (59) is immediate from (62). However, our discussion below yields 

(as a particular case) 

(63) fn lulPdx < C f. 'lVull lul ~ - 'dx ,  

which also leads to (59). 

Let us show that a slight modification in the argument leads to a better in- 

equality than (59). We claim that u satisfies the following form of the maximum 

principle: 
1 / , ,  IVu(y) • (x - Y)I 

(64) lu(z)l _< A + ~ ~.~" II x - y II" l(~(y)>x}dy, 

for every A > 0. Again, we can replace R"  in (64) with f~, and then repeat the 

proof of Theorem 1; using (64) instead of (4) (see also Rema,'k 5), to get 

1 .~ IVu(y). (x - Y)I 
(65) ~( lu(x) l )  < ~ _ . .  H ; - ~ i l : '  ~(l~(y) l )~y,  

where @ is the convex function (see Definition 2). Finally, let us prove that (64) 

holds. It is enough to prove that (64) holds for x E ~2 such that u(x) > A, where 

A > 0. Notice that the set O = {u - A > 0} is open, the set K = {u - A _> O} 

is bounded and closed, and x E O C_ K. Then u - A = 0 on (_90, and, for every 

w E Sn(1), there exists T(w)> 0, such that x-T(w).w E 00, and x - t w  E O, 

for every 0 < t < T(w). Hence 

fo T(~) d fo T(~) - u ( x )  + A = ~ u ( x  - tw) dt = 

It follows that 

which leads to 

v u ( z  - t~,) • ( - ~ )  at. 

fo T(~) u(x)  = ;~ + v , , ( x  - t,,,) • ,,, dr, 

fO T(~') lu(x)[ < A + IVu(x - tw) • " l  dt 

F < A + lVu(x - tw) • w 1 l{,,(~_t~,)__.x)dt. 
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Now we integrate both sides with respect to the surface measure on Sn(1), and 

change the variable z = tw, to get 

- II z I1" l{~(~_~)>x}dz, 

which is equivalent to (64). 

4. Miscellaneous Examples 

The following known proposition gives a wide class of kernels satisfying the max- 

imum principle. We provide a proof for the reader's convenience. 

PROPOSITION 13: Let ¢ be a nonnegative decreasing function o n  [0, q-oo). Define 

G o n R  n x t t "  by 

(66) a (x ,  y) = ¢(ll x - ~ ll). 

Then G satisfies the m a x i m m n  principle. 

Proof: Let /~ be a measure on R n with compact support F.  We show below 

that there is a C such that 

(67) a l , ( x )  < C sup C~,(y). 
yEF 

We claim that there is an integer m depending only on n with the following 

property: For any x E F c, we can find m closed subsets ~ = ~ ( x )  _C F such 

that if x / i s  a point nearest to z in ~ ,  then [[ zi - y I[ -< [[ x - y [I, for all y E V/. 

Indeed let F 1 , . . . , F m  be closed subsets of the unit sphere {y: IIYI[ = 1 } such 
m that diamFi < 1 and with Ui=l Fi = {y: Ily[[ = 1 }. This number m depends 

only on the dimensionn.  Put  Ri = {tx:  x E Fi, t > 0}, and note that for 

~,r/ E Ri with I1~11---I1~11, I I~ - , J I I -<  II,JII. Given x E F c let V~ = F n  ( ~ -  R~). 

If xi in Vi is any point nearest to x, then for any y E ~ ,  the points zi = x - xi 

and z = • - y both  belong to R, and II x - x~ II -< 11 x - y II. Hence rememl)ering 

t h e  n o t e  a b o v e  II zi - -  Z II -< Ilzl l ,  i . e . ,  II x~ - y II -< II x - y II a s  c l a i m e d .  

Now to prove (67) we have 

al,(z) < ~ Iv, ¢(ltx-Yll)#(dy) 
i=1 

i=1 

_ ~ a~,(x~) __ m sup a~ (y ) .  
i=1 y E F 
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Recall (see Remark 1) that (67) implies the maximum principle. Therefore, the 

proof is complete. 1 

Example 4: Using the above proposition we see the kernels 

G(~ ,  y) = II • - Y I I - " + %  

0 < a < n, z, y E R "  satisfy the maximum principle, l 

Example 5: Potential kernels of strong Markov processes satisfy the strong max- 

imum principle. Let us just show this for the Green functions corresponding to 

the Laplacian on bounded domains. Let G be such a function and h = Gf with 

say f bounded. Let (Xt) be the Brownian motion killed upon exit from D and 

T the stopping time T = inf{ t : h(Xt) < A }. Then if h(x) > A, 

h(x)= A + EX [~oT f(xt) dr] 

[; ] = A + E  ~ l(x,)l~h>~)(x,)at 

<A'4-Ez[Lrf+(Xt)l{h>_~,l(Xt)dt] 

< A + G[f+l{h>~}], 

which gives the desired result. | 

The following example gives a method of constructing a class of kernels satis- 

fying the maximum principle. 

Example 6". Let v(t,x) be a semigroup of maps on R+ into R"  such that 

(68)  
v(t,z) E R" ,  0 < t < + o ¢ ,  
v(0, z)  = x, 
v(t + ~, x) = v[t, ~(~, x)l. 

Let # be a potential kernel of a convolution semigroup on R+.  This means 

there is a convolution semigroup (ftt) of probability measures on R+ such that 

f~  ptdt = #. Define 

(69) Tf(z) = /(v(t, x)) p(dt). 
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We claim T satisfies the strong maxinmm principle. To show this let h denote 

the function Tf.  Using the semigroup property (68) we have 

(70) h(v(~, ~))  = f[,,(~ + ~, ~)1 ~,(dt). 

If we write g(s) = fly(s, z)] and U(t) = h(v(t, x)), (70) may be written U = g*/~, 

i.e., U is the potential ofg. We infer U < $ +  (g l{v>x}) *l'. This last inequality 

may be rewritten to get the maximum principle for T. 

Two instances of the above exmnple occurs in the operators P,, and Q,, con- 

sidered in G. Sinnamon [17]. P,, aJld Q,, are defined as: 

I' (7D P, , f ( x )  = f(~x)d,~,  

(72) Q,,f(x) = f ~  f($x) d-~. 

The change of variables ~ ~ exp(- t)  in the integral defining P,, and ~ ~ exp(t) 

in the integral defining Q,, give 

P, , I (~)  = y ( e - ' ~ ) e - ' d t ,  

F Q~I(x) = y(etx)dt; 

dt and exp(-t)dt are both potential kernels. | 

One other method of obtaining kernels satisfying the maxinmnl principle is the 

following: 

Example 7: Let G be a group which acts on X. Suppose tt is a potential kernel 

of a convolution semigroup on G (see [5] for the exmnples). Similarly as in the 

previous example this means that there is a convolution semigroup of probability 

measures (#t) on G such that ~ = f o  #,dr. Define for f on X, T f  by 

Tf(x) = / G  f(gx) p(dg). (73) 

We claim T satisfies the maximum principle with constant 1. For the proof let 

A>O. Fix~ E X. For eachh E G: 

h ~ Tf(h~) = / f(gh~) p(dg) = ] * P 
JG 
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where ](hi) = f(hl~),  

of ] .  Hence 

which finishes the proof. 

hi E G. Thus, for fixed ~, h --* Tf(h~) is the potential 

Tf(h~) < A + / G  ](g) l{Tf(a~)>A}p(dg) 

= A + / G  f(g~) l{Tl(g~)>-)'}p(dg) 

=A+T[ f l {Ts>~}]  

| 
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